- homotopy invariant
- мат.гомотопический инвариант
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Homotopy — This article is about topology. For chemistry, see Homotopic groups. The two dashed paths shown above are homotopic relative to their endpoints. The animation represents one possible homotopy. In topology, two continuous functions from one… … Wikipedia
Invariant — may have several meanings, among which are:* Invariant (computer science), an expression whose value doesn t change during program execution * In computer science, a type in overriding that is neither covariant nor contravariant * Invariant… … Wikipedia
Homotopy groups of spheres — In the mathematical field of algebraic topology, the homotopy groups of spheres describe how spheres of various dimensions can wrap around each other. They are examples of topological invariants, which reflect, in algebraic terms, the structure… … Wikipedia
Hopf invariant — In mathematics, in particular in algebraic topology, the Hopf invariant is a homotopy invariant of certain maps between spheres. toc Motivation In 1931 Heinz Hopf used Clifford parallels to construct the Hopf map etacolon S^3 o S^2, and proved… … Wikipedia
Kervaire invariant — In mathematics, the Kervaire invariant, named for Michel Kervaire, is defined in geometric topology. It is an invariant of 4 n + 2 dimensional almost parallelizable smooth manifolds M , taking values in the 2 element group :Z/2Z. It is equal to… … Wikipedia
Normal invariant — In mathematics, a normal map is a concept in geometric topology due to William Browder which is of fundamental importance in surgery theory. Given a Poincaré complex X, a normal map on X endows the space, roughly speaking, with some of the… … Wikipedia
Instanton — An instanton or pseudoparticle is a notion appearing in theoretical and mathematical physics. Mathematically, a Yang Mills instanton is a self dual or anti self dual connection in a principal bundle over a four dimensional Riemannian manifold… … Wikipedia
Degree of a continuous mapping — This article is about the term degree as used in algebraic topology. For other uses, see degree (mathematics). A degree two map of a sphere onto itself. In topology, the degree is a numerical invariant that describes a continuous mapping between… … Wikipedia
Classification of manifolds — In mathematics, specifically geometry and topology, the classification of manifolds is a basic question, about which much is known, and many open questions remain. Contents 1 Main themes 1.1 Overview 1.2 Different categories and additional… … Wikipedia
Configuration space — Not to be confused with PCI Configuration Space. C space redirects here. For the art gallery, see C Space, Beijing. Contents 1 Configuration space in physics 2 Configuration spaces in mathematics 3 See also … Wikipedia
Fundamental group — In mathematics, the fundamental group is one of the basic concepts of algebraic topology. Associated with every point of a topological space there is a fundamental group that conveys information about the 1 dimensional structure of the portion of … Wikipedia